

УНИКАЛЬНАЯ МЕТОДИКА **БЕСКОНТАКТНОЙ**

ДИАГНОСТИКИ

ТРУБОПРОВОДОВ

Адрес: 196084, Россия, Санкт-Петербург, Лиговский пр., 254


E-mail: info@polyinform.com
URL: http://www.polyinform.ru

Тел. (+7-812) 458-85-73 Тел. (+7-812) 458-85-74 Факс (+7-812) 458-86-76

Проблема

В настоящее время трубопроводный транспорт (для нефти и газа) в России **существенно изношен**, срок эксплуатации большинства трубопроводов составляет **более 20 лет**::

- Более **10 % трубопроводов** (60 % трубопроводов ОАО «Газпром») являются **непроходимыми** для внутритрубного метода в связи с наличием технических ограничений (наличие подводных переходов и др.)
- У Существующие методы НКТ являются **дорогостоящими, трудоемкими**, требуют привлечения значительных ресурсов Заказчиков, многократных прогонов снарядов-калибраторов, остановки и/или изменения режима транспортировки сырья, что ведет к значительным сопутствующим потерям собственников
- ▶ Обеспечение промышленной безопасности нефте- и газопроводов, за счет внедрения качественной и доступной диагностики, является не только вопросом сохранения экологии, но и фактором обеспечения экономической стабильности эксплуатирующих их предприятий.

Решение – КМД-01М

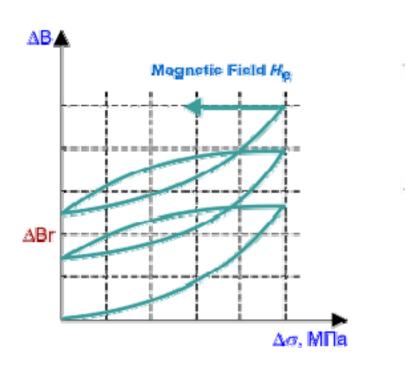
Разработан принципиально новый подход к проведению технической диагностики трубопроводов бесконтактным магнитометрическим методом с использованием высокотехнологичного комплекса КМД-01М

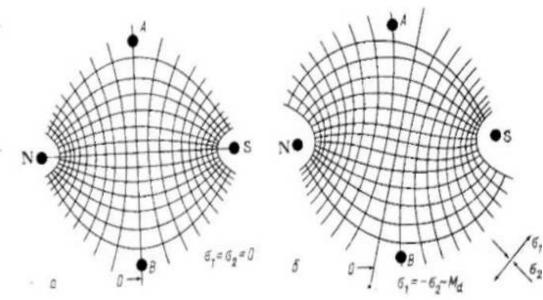
Комплекс бесконтактной магнитометрической диагностики КМД-01М состоит из следующих составных частей:

Блок трехкомпонентных магнитометров

Устройство накопления и визуализации данных

Дополнительное оборудование

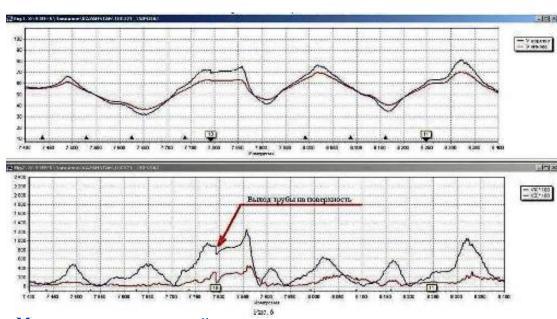


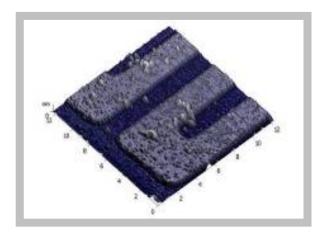


Физические принципы работы КМД-01М

Обнаружение, локализация и классификация дефектов производится дистанционно путем обработки зарегистрированных результатов измерения трех составляющих постоянного магнитного поля в четырех точках пространства, а также их градиентов

Работа прибора основана на эффекте Виллари (магнитоупругий эффект) - изменении намагниченности магнетика под действием механических деформаций и напряжений в металле





Новизна

- Комплекс КМД-01М создан на основе тонкопленочного магниторезистивного преобразователя, измеряющего вектор магнитной индукции в четырех точках пространства.
- Одним из основных факторов, определяющих высокую чувствительность прибора и избирательность диагностики, является применение магнитных нанопленок, обладающих рядом ключевых преимуществ

Магнитограмма аномалий, получаемая в режиме реального времени

Ключевые преимущества магнитных нанопленок:

- Высокая магнитная чувствительность
- Широкий диапазон рабочих частот
- Пониженный гистерезис
- Малое напряжение смещения нуля
- Низкий температурный дрейф
- Низкий температурный коэффициент чувствительности.

Нанотехнологическая компонента

Принцип бесконтактной магнитометрии требует применения высокочувствительных датчиков, способных регистрировать крайне слабые магнитные поля на удалении от металла трубопровода

Основным чувствительным элементом датчиков магнитного поля является феррит, выполненный в виде нанопленки на кремниевой подложке

Размеры феррита, его состав определяют чувствительность, избирательность и быстродействие датчиков

Наилучшими характеристиками обладают магнитные пленки на основе пермаллоя FeNi и сплава FeNiCo толщиной от 10 до 30 нм при толщине разделительного слоя до 5 нм (Та или Тi)

Научно-техническая реализуемость и обоснованность

Новые конструктивно-технологические решения и программное обеспечение для разработанного измерительного оборудования защищены патентами

В 2010 г. проект получил положительное заключение Научно-технического совета Государственной Корпорации «Российская Корпорация нанотехнологий», подписанное тремя действительными членами Российской Академии наук

В 2011 г. проект прошел техническую экспертизу 10 независимых экспертов **Фонда** "Сколково" на получение статуса инновационного проекта. Компания стала участником фонда "Сколково"

Решаемые задачи

- Дистанционное обнаружение с поверхности Земли (без вскрытия трубопровода) участков трубы с дефектами металла в обычном режиме работы объекта
- Дистанционное бесконтактное определение технического состояния подводных участков трубопровода
- > Определение степени опасности повреждений
- ▶ Выявление дефектов трубопровода в режиме "on-line"
- **Автоматическая трассировка** трубопровода с последующем нанесение трассы на топографическую карту местности
- Построение электронных карт расположения дефектов с привязкой их в географических координатах GPS
- Проведение технической диагностики подводных переходов трубопроводов, в том числе, закрытых донными отложениями

На объекте ОАО «Лукойл-Западная Сибирь», 2010 г.

Определяемые дефекты

- ✓ Напряженно-деформированные состояния
- ✓ Расслоения металла
- ✓ Дефекты сварных швов
- ✓ Коррозионно-усталостные напряжения
- ✓ Локальные повреждения (язвенную коррозию, потери металла и др.)
- ✓ Изменение геометрии трубопровода

Локальная коррозия

Язвенная коррозия

Напряженно-деформированное состояние

Дефект сварного шва

Технические характеристики КМД-01М

Расстояние между блоком магнитометров и трубопроводом	10-15 диаметров трубы в зависимости от рабочего давления
Диаметры обследуемых трубопроводов	от 159 мм
Погрешность определения координат	± 0,5 M
Глубина выявляемых дефектов	начиная с 10 % от толщины стенки трубы
Емкость памяти	достаточна для непрерывной записи информации на 500 км трассы при шаге сканирования 0,05 м
Производительность	До 50 км в день на 1 бригаду (2 человека)
Диапазон рабочих температур	от минус 55 °C до + 55 °C

ПРЕИМУЩЕСТВА КМД-01М*

- ✓ Не требует подготовки трубопровода, его остановки или изменения режима работы;
- ✓ Высокая достоверность выявляемых дефектов (до 93%);
- ✓ Высокая производительность (до 50 км/день на 1 бригаду);
- ✓ Широкий спектр выявляемых дефектов;
- ✓ Диагностирование участков, недоступных для внутритрубного и контактного методов дефектоскопии;
- ✓ Автоматическая трассировка;
- ✓ Обработка первичной информации для индикации местонахождения магнитных аномалий в **on-line режиме**, возможность ставить маркеры, присоединять к установленному маркеру речевую информацию, а также фото-и видеофайлы;
- ✓ Низкая стоимость услуг.

Арбитражные испытания, проводимые ОАО «ЛУКОЙЛ-Западная Сибирь», показали 93 % достоверность результатов по критическим дефектам

Методика выполнения измерений с помощью системы КМД-01М

Комплекс обслуживается двумя операторами:

Первый оператор с помощью трассоискателя отслеживает трассу трубопровода и производит линейную привязку маршрута с помощью GPS приемника от ближайшего реперного пункта (кранового узла, КИПа, точки врезки и т.д.).

Второй оператор производит измерение флуктуаций постоянного магнитного поля с использованием магнитометров.

По полученным данным определяются участки концентрации напряжений, вызванных коррозионным износом, напряженно-деформированными состояниями, нарушением геометрии трубопроводов и другими дефектами.

В процессе измерений комплекс автоматически осуществляет запись GPSданных в географических координатах.

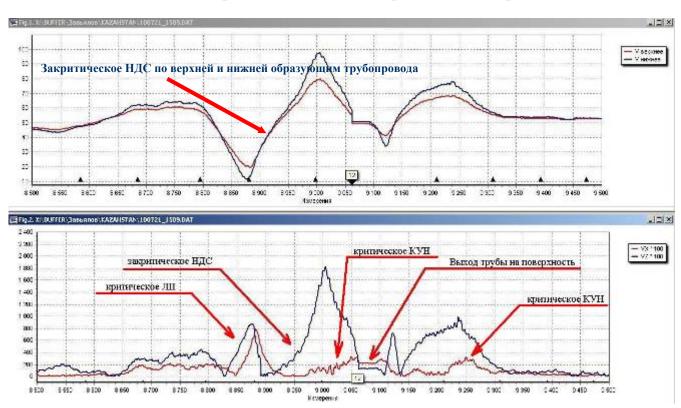
После проведения измерений производится обработка и интерпретация полученных данных в аналитической лаборатории.

Разработанный опытно-промышленный образец комплекса КМД-О1М успешно прошел промышленные испытания на объектах ОАО «Газпром», ОАО «Оргэнергогаз», ОАО «ТНК-Нягань», ОАО «Лукойл» и др.

Технология комплексной диагностики трубопроводов

Комплексная диагностика технического состояния нефте- и газопроводов производится в четыре этапа.

- **І этап** Сбор и анализ необходимой технической информации об объекте, подготовка измерительной аппаратуры.
- И этап Полевые работы с применением системы КМД-01М: магнитометрические бесконтактные измерения с визуализацией данных. Одновременно проводится точное определение GPSкоординат точек измерения. Данные измерений могут отправляться в процессе работы в Центр обработки информации через Интернет.
- **III** этап Обработка и интерпретация полученных данных. По требованию заказчика на местах выявленных аномалий может быть осуществлено вскрытие трубопровода с проведением ДДК дополнительного диагностического контроля неразрушающими методами (толщинометрия, твердометрия).
- IV этап Анализ всей накопленной информации, построение электронных карт аномалий и оформление заключения о техническом состоянии промышленного объекта.

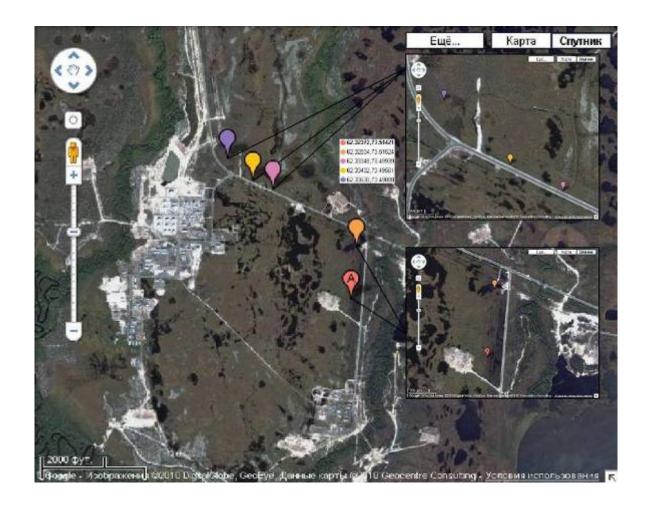

Комплекс КМД-01М сертифицирован Госстандартом России

Пример визуализации данных

- Получаемый с
 магниторезистивных датчиков
 сигнал усиливается и
 преобразовывается с помощью
 аналого-цифрового
 преобразователя в код,
 поступающий на компьютер.
- Программное обеспечение обрабатывает поступившую информацию и отображает на мониторе магнитограммы по каждой компоненте поля в четырех точках пространства, в режиме реального времени

Магнитограммы аномалий закритического уровня

Условные обозначения:


НДС - напряженно-деформированное состояние

КУН - корозионно-усталостное напряжение

ЛП - локальное повреждение

Электронная карта магнитных аномалий закритического уровня

На электронной карте показана привязка дефектов закритического уровня, требующих дополнительного дефектоскопического контроля, на межпромысловом трубопроводе с определением географических координат

Планируемые направления и цели развития

I. Размещение прибора на автомобиль высокой проходимости

- Направление развития: разработка специального подвеса, позволяющего размещать прибор на автомобиль
- Цель: увеличение производительности работ до 50 км в сутки на 1 бригаду (в зависимости от трассы).

II. Размещение прибора на подводном аппарате

- Направление развития: модернизация прибора для размещения на автономном подводном аппарате торпедного типа
- Цель: выход на новый сектор рынка сбыта диагностика подводных переходов трубопроводов

III. Установка прибора на беспилотном летательном аппарате

- Направление развития: модернизация прибора для размещения на беспилотном летательном аппарате вертолетного типа
- Цель: расширение областей, доступных для диагностики, за счет труднопроходимых районов, включая болота и тундру.

Опыт

Диагностические работы с использованием системы КМД-01М проводились на трубопроводах различного типа, назначения и степени технологической подготовленности:

ООО «Казмунайгаз», Казахстан

- магистральный газопровод «Средняя Азия – Центр», ø 1220 мм.

ОАО «Лукойл-Западная Сибирь», Россия

- газосборный трубопровод ТПП «Ямалнефтегаз», ø 260-420 мм;
- промысловые нефтепроводы ТПП «Когалымнефтегаз», «Покачинефтегаз», «Лангепаснефтегаз», «Урайнефтегаз», в 159-420 мм;

ОАО «ТНК-ВР», Россия

- газо- и нефтесборные трубопроводы, в р-не г. Нягань, ø 159 - 420 мм.

ОАО АНК «Башнефть», Россия

- промысловый нефтепровод, ø 159-420 мм

ОАО «НК «Роснефть», Россия

- промысловый нефтепровод «РН-Юганскнефтегаз», ø 530 мм

ООО «ЛУКОЙЛ-Коми», Россия

- межпромысловый нефтепровод, ø 530 мм

ОАО «Газпром», СУ «Леноргэнергогаз»Россия

- газоперекачивающие станции - КС «Ржевская», КС «Смоленская», КС «Волховская», Ø 1020 мм

«Saudi Aramco», Саудовская Аравия

- магистральный нефтепровод, ø 31"

Опыт

Диагностические работы с использованием системы КМД-01М проводились на трубопроводах различного типа, назначения и степени технологической подготовленности:

ООО «Казмунайгаз», Казахстан

- магистральный газопровод «Средняя Азия – Центр», ø 1220 мм.

ОАО «Лукойл-Западная Сибирь», Россия

- газосборный трубопровод ТПП «Ямалнефтегаз», ø 260-420 мм;
- промысловые нефтепроводы ТПП «Когалымнефтегаз», «Покачинефтегаз», «Лангепаснефтегаз», «Урайнефтегаз», ø 159-420 мм;

ОАО «ТНК-ВР», Россия

- газо- и нефтесборные трубопроводы, в р-не г. Нягань, ø 159 - 420 мм.

ОАО АНК «Башнефть», Россия

- промысловый нефтепровод, Ø 159-420 мм

ОАО «НК «Роснефть», Россия

- промысловый нефтепровод «РН-Юганскнефтегаз», ø 530 мм

ООО «ЛУКОЙЛ-Коми», Россия

- межпромысловый нефтепровод, Ø 530 мм

ОАО «Газпром», СУ «Леноргэнергогаз»Россия

- газоперекачивающие станции - КС «Ржевская», КС «Смоленская», КС «Волховская», Ø 1020 мм

«Saudi Aramco», Саудовская Аравия

- магистральный нефтепровод, ø 31"

Опыт

ОБЪЕКТ: магистральный газопровод (диаметр 1020 мм) АО «Интергаз Центральная Азия» (Казахстан)

ВИД РАБОТ: Диагностика трубопровода при помощи комплекса магнитометрической диагностики КМД-01М

ПРОДОЛЖИТЕЛЬНОСТЬ РАБОТ: 19.07.2010 г – 23.07.2010 г

ОБЪЕКТ: магистральные газопроводы (диаметры 159 - 600 мм) НК «Лукойл - Западная Сибирь »

ВИД РАБОТ: Диагностирование трубопроводов методами неразрушающего контроля при помощи комплекса магнитометрической диагностики КМД-01М

ПРОДОЛЖИТЕЛЬНОСТЬ РАБОТ: 18.08.2010 г –

08.10.2010 г

ОБЪЕКТ: газо- и нефтесборные трубопроводы в р-не г. Нягань (диаметры 159 - 400 мм), **ОАО** "ТНК-ВР"

ВИД РАБОТ: Диагностика трубопроводов при помощи комплекса магнитометрической диагностики КМД-01М

ПРОДОЛЖИТЕЛЬНОСТЬ РАБОТ: 18.03.2011 г – 28.03.2011 г

ОБЪЕКТ: газоперекачивающие станции в р-не городов Ржев, Смоленск, Волхов (диаметр трубопроводов 1020 мм), ОАО "Газпром"

ВИД РАБОТ: Диагностика входных и выходных трубопроводов газоперекачивающих станций при помощи комплекса магнитометрической диагностики КМД-01М


ПРОДОЛЖИТЕЛЬНОСТЬ РАБОТ: 14.06.2011 г – 17.06.2011 г

Патенты

Методика диагностирования, прибор, программное обеспечение запатентованы в Государственном реестре полезных моделей РФ (7 патентов).

Имеются все необходимые лицензии для производства работ и Сертификат соответствия на прибор.

Адрес: 196084, Россия, Санкт-Петербург, Лиговский пр., 254

E-mail: info@polyinform.com

<u>URL:</u> <u>http://www.polyinform.ru</u>

Тел. +7(812) 458-85-73

Тел. +7(812) 458-85-74

Факс +7(812) 458-86-76

